- 1. (10 pts) For a population with mean μ and standard deviation σ , the sampling distribution of \overline{x} of all possible samples of size n has mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$. Furthermore, if the sampled population is normal, then \overline{x} is normal for any sample size n. If the sampled population is not normal, then \overline{x} is approximately normal provided the sample size is at least 30.
- 2. (12 pts) This problem involves a proportion of a single sample. Show all seven steps.
 - (1) Let p be the proportion of 20- to 34-year olds who had drivers licenses in 2010. The hypotheses are

$$H_0: p = 0.80$$

 $H_1: p > 0.80$

(2) $\alpha = 0.05$.

(3) Let
$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$
.

(4) The sample proportion is 0.843 or $\frac{337}{400} = 0.8425$. Use 1-PropZTest or compute

$$z = \frac{.8425 - 0.80}{\sqrt{\frac{(0.80)(0.20)}{400}}}$$
$$= \frac{0.425}{0.02}$$
$$= 2.125.$$

- (5) p-value = normalcdf(2.125,E99) = 0.0168.
- (6) Reject H_0 because the *p*-value is less than α .
- (7) The proportion of 20- to 34-year-olds with drivers licenses in 2010 was more than 80%.
- 3. (10 pts) Use 1-PropZInt and get (0.8068, 0.8782) or compute

$$\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.8425 \pm 1.960 \sqrt{\frac{(0.8425)(0.1575)}{400}}$$
$$= 0.8425 \pm 0.0357.$$

- 4. (17 pts)
 - (a) (14 pts) This is a hypothesis test of proportions involving two samples. Show the seven steps.

(1) Let p_1 be the proportion of 17-year-olds with drivers licenses in 1983 and let p_2 be the proportion of 17-year-olds with drivers licenses in 2008. The hypotheses are

$$H_0: p_1 = p_2$$

 $H_1: p_1 > p_2$

- (2) $\alpha = 0.05$.
- (3) Let $z = \frac{\hat{p}_1 \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$.
- (4) Use 2-PropZTest or compute the following. First, the pooled estimate for p.

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

$$= \frac{69 + 25}{100 + 50}$$

$$= 0.6267.$$

Then compute z.

$$z = \frac{0.69 - 0.50}{\sqrt{(0.6267)(0.3733)\left(\frac{1}{100} + \frac{1}{50}\right)}}$$
$$= \frac{0.19}{0.08377}$$
$$= 2.268.$$

- (5) p-value = normalcdf(2.268,E99) = 0.01167.
- (6) Reject H_0 because the *p*-value is less than α .
- (7) The proportion of 17-year-olds with drivers licenses in 1983 was greater than the proportion of 17-year-olds with drivers licenses in 2008.
- (b) In part (a) the pooled estimate for p was calculated in Step 4. It also appears in the TI-83 display when you use 2-PropZTest. The value is 0.6267.
- 5. (12 pts) This problem is a hypothesis test involving a mean of one sample. First, enter the data (2nd row) into the TI-83. Show the seven steps.
 - (1) Let μ be the mean number of trees of diameter 6" or greater of all such plots. The hypotheses are

$$H_0: \quad \mu = 20$$

 $H_1: \quad \mu > 20$

- (2) $\alpha = 0.10$.
- (3) Because the sample is small and the population is (apparently) normal, we must use the t test.

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}.$$

(4) Use T-Test or compute the following. First, use 1-Var Stats to get $\overline{x}=22.75$ and s=9.603. Then compute

$$t = \frac{22.75 - 20}{9.603/\sqrt{8}}$$
$$= \frac{2.75}{3.395}$$
$$= 0.8100.$$

- (5) There are 7 degrees of freedom, so p-value = tcdf(0.8100,E99,7) = 0.2223.
- (6) Accept H_0 because the *p*-value is greater than α .
- (7) The average number of trees of diameter 6" or greater per plot is 20.
- 6. (10 pts) Use TInterval and get (16.318, 29.182) or compute the following. First, use the t table to find the value of t for a 90% confidence with 7 degrees of freedom. The value is t = 1.895.

$$\overline{x} \pm t \left(\frac{s}{\sqrt{n}}\right) = 22.75 \pm 1.895 \left(\frac{9.603}{\sqrt{8}}\right)$$

= 22.75 \pm 6.434.

- 7. (17 pts)
 - (a) This is a hypothesis test involving means of two samples. This situation cannot be a paired sample because the sample sizes are different and because there is no sensible way to pair a rat on Diet 1 with a rat on Diet 2. Show the seven steps.
 - (1) Let μ_1 be the mean weight of rats on Diet 1 and let μ_2 be the mean weight of rats on Diet 2. The hypotheses are

$$H_0: \quad \mu_1 = \mu_2$$

 $H_1: \quad \mu_1 \neq \mu_2$

- (2) $\alpha = 0.05$.
- (3) The sample sizes are large, so it is ok to use z, but it is better to use t. In any case, we do not know σ_1 or σ_2 , so we must use s_1 and s_2 in their place. Using t, the test statistic is

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}.$$

(4) Use 2-SampTTest or compute the following. First, compute \boldsymbol{s}_p and get

$$s_p = \sqrt{\frac{(59)(1.25)^2 + (79)(0.95)^2}{138}} = 1.0884.$$

Then compute

$$t = \frac{8.4 - 9.0}{1.0884\sqrt{\frac{1}{60} + \frac{1}{80}}}$$
$$= -\frac{0.6}{0.1859}$$
$$= -3.228.$$

(5) There are 138 degrees of freedom and the test is two-tailed, so

$$p$$
-value = $2 \times \text{tcdf}(-\text{E99}, -3.228, 138) = 0.001558.$

- (6) Reject H_0 because the *p*-value is less than α .
- (7) The weight of the rats on Diet 1 is different from the weight of the rats on Diet 2.
- 8. (12 pts) (Optional)
 - (a) According to the Central Limit Theorem, the values of \overline{x} from samples of size n=25 will have mean 69.5 and standard deviation $\frac{2.9}{\sqrt{25}}=0.58$. Furthermore, because we are sampling from a population that is already normal, \overline{x} will be normal (even though the sample size is small).
 - (b) Using the description in part (a), we calculate the probability as

$$normalcdf(70,E99,69.5,0.58) = 0.1943.$$